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1.	INTRODUCTION	

Air	pollution	is	defined	as	the	presence	of	solid,	liquid	or	gaseous	components	in	the	atmosphere.	Above	all,	in	
the	 troposphere	 (lower	 atmosphere	 layer	 in	 contact	with	 the	 land)	 the	 pollutants	 are	 a	 risk	 and	 trouble	 for	
living	beings	or	goods	 in	general.	 In	fact,	air	pollution	 is	the	major	environmental	problem	in	modern	human	
history	 (Green	&	 Sánchez,	 2012).	 Nowadays	 environmental	 pollution	 can	 be	 produced	 by	 natural	 or	 human	
actions;	as	evidence	of	natural	sources	are	mainly	 forest	 fires,	volcanic	emissions,	dust,	sand,	vegetation	and	
wildlife;	and	main	human	sources	of	air	pollution	for	instance	are	industry,	power	generation,	transportation,	
deforestation	and	cattle	raising	(Borrego	et	al.,	2015).		

The	city	of	Medellín	is	 located	in	the	center	of	Aburra	Valley,	and	has	been	one	of	the	most	polluted	cities	in	
Latin	America,	where	its	geographic	qualities,	the	plenty	industry	and	the	growing	car	fleet	provide	the	poor	air	
quality	 (Green	 &	 Sánchez,	 2012).	 A	 proof	 of	 this	 is	 given	 around	 March	 of	 2016	 when	 the	 environmental	
pollution	 ratings	were	 the	highest	 registered	 in	 the	all	history	of	 the	 city	and	 several	 factors	 that	 influenced	
these	ratings	were	the	ENSO	(commonly	called	‘El	Niño’),	little	rains,	weak	winds	and	increased	temperatures,	
generating	 accumulation	 of	 pollutants	 from	 fuel	 combustion,	 Sahara	 sand	 and	 smoke	 from	 forest	 fires	 in	
Colombia	and	Venezuela,	that	joined	with	kept	off	the	scattering	of	pollutants	and	raised	up	the	concentration	
levels	 of	 pollutants	 like	 PM2.5	 and	 PM10	 (Alsema,	 2016).	 Therefore	 the	 measures	 registered	 were	 PM2.5	
higher		than	160	µg/m3	24-hour,	when	the	guideline	of	World	Health	Organization	(WHO)	is		25	µg/m3	24-hour	
mean	(Ospina,	2016).	

Due	to	the	magnitude	of	the	problem	that	air	pollution	has	become,	many	efforts	have	been	made	to	monitor,	
reduce	and	prevent	 the	 spread	of	pollutants	 in	 the	air.	As	 a	 first	 containment	 action	 is	 greatly	 important	 to	
know	 the	pollution	 concentrations	and	 the	air	quality	 in	 an	area	and	 the	 time	given.	 For	 this,	 nowadays,	 an	
advanced	 system	 of	 measure	 and	 mathematical	 models	 exist,	 which	 represent	 the	 air	 pollution	 dynamics.	
These	mathematical	models	known	as	Air	Quality	Models	(AQM),	allow		a	permanent	monitoring	and	in	many	
cases	predictions	of	the	air	quality	behavior.	

In	view	of	the	problem	that	air	pollution	represents	to	the	city	of	Medellín,	is	necessary	looking	for	mechanisms	
that	 allow	 contain	 and	 reduce	 levels	 of	 pollutants	 in	 the	 environment.	 The	 first	 step	 to	 decrease	 these	
pollutants	is	to	know	their	behavior	and	the	air	state	of	the	city.	Having	measures	of	the	main	air	pollutants	and	
knowing	their	behaviors	 in	the	Aburra	Valley	atmosphere	could	be	proposed	actions	that	help	to	 improve	air	
quality	levels	and	reduce	impacts	of	pollution	on	the	population.	Without	these	factors	in	advance	is	impossible	
to	 think	 of	 responses	 or	 preventives	 actions.	 Following	 the	 preceding	 outlook	 has	 been	 proposed	 the	 next	
question:	

Is	 it	 possible	 to	 model	 the	 atmosphere	 behavior	 at	 the	 Aburra	 Valley	 scale	 so	 that	 it	 can	 to	 monitor	
environmental	pollutants	and	predict	their	behavior?	

	

	 	



	

	

TECHNICAL	REPORT	RT-03	

	

	

PublicDocument	 Page6	de	18	
MAUI-Data Assimilation 

MAUI-Data Assimilation On Air Quality Models -RT-03	

	

2.	THEORETICAL	FRAMEWORK	

2.1.	AIR	POLLULANTS	

In	 our	 days,	 air	 pollution	 is	 listed	 as	 the	 highest	 environmental	 risk	 for	 human	health.	 In	 accordance	with	 a	
report	 of	 the	 World	 Health	 Organization	 (WHO),	 in	 2012	 one	 of	 each	 nine	 deaths	 were	 consequence	 of	
conditions	 related	 to	 air	 pollution	 (World	 Health	 Organization,	 2016).	 Besides	 the	 principal	 health	 risk	
associated	with	air	pollution	are	 respiratory	and	skin	 (dermatological)	diseases.	Respiratory	disease	 is	one	of	
the	main	 causes	 of	 natural	 deaths	 in	 European,	 American	 and	 Asian	 countries	 (World	 Health	 Organization,	
2016).	 Additionally,	 different	 air	 pollutants	 like	 Carbon	 Dioxide	 (CO2),	 Ozone	 (O3)	 and	 coal	 ash	 contribute	
substantially	to	climate	change,	another	current	wide	environmental	risk	(Sauter	et	al.,	2012).	In	the	same	way	
in	Latin	America	and	the	Caribbean	at	least	100	million	people	are	exposed	to	air	pollution	above	World	Health	
Organization	recommended	levels,	which	means	they	are	in	high	risk	of	public	health.	Meanwhile,	the	biggest	
cities	 in	 Latin	 America	 keep	 alarming	 pollution	 levels,	 because	 they	 gather	 the	 majority	 of	 industries	 and	
combustion	vehicles.	The	10	most	polluted	cities	in	Latin	America	are:	Monterrey,	Guadalajara	and	the	Federal	
District	 (México),	 Cochabamba	 (Bolivia),	 Santiago	 (Chile),	 Lima	 (Peru),	 Bogotá	 and	 Medellín	 (Colombia),	
Montevideo	 (Uruguay)	 and	San	Salvador	 (El	 Salvador).	 The	 leading	air	 pollutants	 are	 shown	below	 (Green	&	
Sánchez,	2012):	

Particulate	matter	PM2.5	y	PM10:	 is	made	up	of	a	mix	among	tiny	solid	and	liquid	particles	with	lesser	sizes	
than	2.5	and	10	micrometers,	respectively.	This	kind	of	particles	 is	easily	breathed	in	humans,	bringing	about	
serious	respiratory	diseases	and	these	being	composed	of	chemical	substances	can	result	carcinogenic.	

Ozone	 (O3):	 is	 a	 gas	made	 up	 of	 three	 oxygen	molecules.	 Although	 be	 essential	 for	 life,	 which	 protect	 the	
surface	from	ultraviolet	rays	emitted	by	the	sun	(designated	ozone	layer	which	is	located	in	the	stratosphere)	
has	adverse	effects	in	the	respiratory	system	even	at	relatively	low	levels.	Ozone	is	not	directly	released	to	the	
troposphere,	 it	 is	formed	by	photochemical	reactions	such	as	the	Oxides	of	Nitrogen	(NOx)	and	other	volatile	
chemical	components.	

Nitrogen	 Dioxide	 (NO2):	 is	 a	 gas	 formed	 as	 a	 result	 of	 reaction	 between	Oxygen	 and	Nitrogen.	 It	 is	mainly	
produced	of	fossil	fuels	in	transportation,	industry	such	as	power	generation.	The	NO2	at	higher	concentrations	
cause	 irritation	 in	airways	of	the	 lungs,	 increasing	the	risk	and	respiratory	diseases.	 It	also	contributes	to	the	
formation	of	ozone	in	the	troposphere.	

Sulfur	dioxide	(SO2):	similar	to	the	NO2	it	is	a	gas	formed	during	combustion	of	fossil	fuels	like	oil	and	coal.	The	
exposition	at	higher	concentrations	cause	respiratory	and	heart	diseases.		

2.2.	LOTOS-EUROS	MODEL	

In	the	last	20	years,	Air	Quality	Models	have	seen	a	great	growth	and	development;	in	consequence	diversity	of	
models	exist,	differing	in	their	complexity,	size	of	the	region	in	study,	to	the	method	used	for	its	development	
(Thunis	et	al.,	2016).	Very	general,	the	Air	Quality	Models	can	be	broken	up	in	four	categories	according	with	
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their	 dynamical	 behavior:	 i)	 Gaussian,	 ii)	 statistic,	 iii)	 Lagrangian	 and	 iv)	 Eulerian	 like	 chemistry	 transport	
models	(Lateb	et	al.,	2016;	Thunis	et	al.,	2016);	the	latter	being	the	most	used	and	reported	for	monitoring	and	
predicting	 the	pollution	behavior	and	define	 the	air	quality	 in	bigger	areas.	 	So,	 these	are	 frequently	used	 in	
areas	with	sizes	like	countries	or	continents	and	have	been	less	used	in	areas	like	cities.	

One	of	the	most	used	and	studied	Air	Quality	Models	in	the	present	is	the	LOTOS-EUROS	(Mues	et	al.,	2014).	
The	LOTOS-EUROS	(LOng	Term	Ozone	Simulation-	EURopean	Operational	Smog	model)	is	a	chemical	transport	
model	that	models	in	three	dimensions	the	air	pollution	in	the	lower	troposphere.	This	model	was	developed	in	
2004	by	TNO	and	RIVM/MNP	organizations,	in	Netherlands,	unifying	the	previous	developed	LOTOS	and	EUROS	
models.	 At	 the	 beginning	 it	 was	 developed	 like	 a	model	 focused	 on	 ozone,	 but	 actually,	 the	 LOTOS-EUROS	
(versión	1.8)	allows	calculate	concentrations	of	Ozone,	Particulate	Matter,	Nitrogen	Dioxide,	heavy	metals	and	
organic	pollutants	with	a	standard	model	resolution	of	approximately	36x28	km.	(Sauter	et	al.,	2012).	

The	 LOTOS-EUROS	 has	 widely	 used	 in	 different	 projects	 located	 around	 the	 world,	 whereby	 it	 shows	 the	
capacity	of	the	model.	As	well,	it	is	within	the	framework	of	the	project	MACC	II,	that	is	looking	to	produce	the	
forecast	at	European	continent	level	in	air	quality,	meteorology	and	solar	radiation	(Marécal	et	al.,	2015).	The	
MACC	II	project	uses	the	network	of	satellites	and	sensors	denominated	COPERNICUS	along	with	LOTOS-EUROS	
(among	other	air	quality	models)	to	make	the	predictions	of	air	quality.		Likewise,	the	LOTOS-EUROS	is	used	in	
Netherlands	to	predict	Ozone	concentrations	and	PM	in	national	territory.	This	project	is	named	SmogProg	and	
is	used	by	Dutch	authorities	as	official	forecasts,	it	is	directly	published	to	the	institutions	and	population	in	the	
country	(Hendriks	et	al.,	2013).	The	LOTOS-EUROS	model	has	not	been	only	implemented	in	Europe,	actually	is	
part	 of	 the	 project	 PANDA,	 that	 collect	 a	 set	 of	 models	 and	 looks	 for	 modeling	 and	 predicting	 pollutants	
concentrations	in	Chinese	territory.	Similarly,	in	the	north	of	Africa	is	settled	the	Regional	Center	for	Northern	
Africa,	Middle	East	and	Europe,	which	uses	 the	LOTOS-EUROS	to	monitoring	and	predicting	 the	air	quality	 in	
Northern	Africa,	Middle	East	and	Eastern	Europe.	 In	America	continent	 the	model	has	been	 implemented	by	
Brazil	to	monitoring	and	predicting	Ozone	concentrations,	Nitrogen	Dioxide	and	PM	2.5	while	was	taking	place	
the	2014	FIFA	World	Cup.	

The	dynamics	of	 the	pollutants	 in	 the	model	 LOTOS-EUROS	 	 is	 regulated	by	processes	of	 chemical	 reactions,	
diffusion,	 drag,	 dry	 deposition	 and	 wet,	 emissions	 and	 aversion	 (Sauter	 et	 al.,	 2012;	 van	 Loon,	 Builtjes,	 &	
Segers,	2000).	The	LOTOS-EUROS	dynamic	is	given	by:		

𝜕𝐶
𝜕𝑡

+ 𝑈
𝜕𝐶
𝜕𝑥

+ 𝑉
𝜕𝐶
𝜕𝑦

+𝑊
𝜕𝐶
𝜕𝑧

=
𝜕
𝜕𝑡

𝐾!
𝜕𝐶
𝜕𝑥

+
𝜕
𝜕𝑦

𝐾!
𝜕𝐶
𝜕𝑦

+
𝜕
𝜕𝑧

𝐾!
𝜕𝐶
𝜕𝑧

+ 𝐸 + 𝑅 + 𝑄 − 𝐷 −𝑊	

when	 C	 the	 concentration	 of	 a	 pollutant,	 U, V	 and	 W,	 are	 wind	 components	 in	 West-East,	 South-North	
direction	and	vertical	direction,	respectively,	𝐾!	and	𝐾!	are	horizontal	and	vertical	coefficients	by	diffusion	of	
turbulence.	 E	 represents	 the	 entrainment	 or	 detrainment	 due	 to	 variations	 in	 layer	 height.	 R	 represents	
generation	and	consumption	rates	of	pollutant	by	chemical	reactions.	Q	is	contribution	by	emissions,	D	and	W	
are	loss	by	dry	and	wet	deposition	process,	respectively.	

(1)	
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The	main	equation	of	LOTOS-EUROS	dynamic	 is	composed	by	different	operators,	each	one	models	different	
components	 of	 pollutants	 behavior.	 The	 operators	 that	 compose	 the	 LOTOS-EUROS	 are:	 i)	 the	 transport	
operator,	 ii)	 the	 chemistry	 operator,	 iii)	 the	 dry	 deposition	 operator	 and	 iv)	 the	 wet	 deposition	 operator.	
Emissions	and	values	related	with	meteorology	are	directly	taken	from	data	sources	as	satellite	or	measuring	
devices	located	in	the	land	surface.	

The	transportation	operator	consists	 in	the	dynamic	of	advection	in	three	dimensions,	horizontal	and	vertical	
diffusion	and	entrainment.	The	horizontal	advection	 is	described	by	horizontal	winds	 (U,V)	 that	are	 inputs	to	
the	model.	The	vertical	wind	component	(W)	is	calculated	by	the	model	through	the	convergence	and	
divergence	 of	 the	 horizontal	winds.	 The	 horizontal	 diffusion	 coefficient	 (Kh)	 is	 calculated	 through	 an	
empiric	constant	η	and	the	speed	tensor	deformation	Def,	as	shown	in	(2)	and		(3):	

𝐾! = 𝜂 𝐷𝑒𝑓 	

                                    𝐷𝑒𝑓 = !"
!"
+ !"

!"

!
+ !"

!"
− !"

!"

!
	

The	 chemistry	 operator	 models	 everything	 related	 to	 the	 production	 and	 consumption	 of	 components	 by	
different	chemical	reactions	in	the	atmosphere.	Due	to	the	complexity	of	LOTOS-EUROS,	to	handle	a	complete	
mechanism	 of	 chemical	 reactions	 could	 cause	 an	 unmanageable	model.	 To	 avoid	 this	 problem,	 the	 LOTOS-
EUROS	can	use	one	of	two	mechanisms	of	simplified	reactions,	Carbon	Bond-IV	(CB-IV)	or	CB99.	The	CB-IV	uses	
nine	primary	components	directly	issued	to	the	atmosphere	and	a	total	of	81	reactions	to	determine	secondary	
species	 produced	 in	 the	 atmosphere.	 The	 second	 mechanism	 belonging	 to	 the	 LOTOS-EUROS	 is	 the	 CB99,	
which	is	a	variation	of	the	CB-IV.	The	CB99	uses	42	chemical	species	and	95	reactions,	including	13	photolytic	
reactions.	

The	dry	deposition	is	divided	in	two	phases,	the	dry	deposition	of	gases	and	the	dry	deposition	of	particles.	The	
dry	 deposition	 of	 gases	 is	 modeled	 through	 the	 transfer	 of	 gases	 between	 the	 land	 surface	 and	 the	
atmosphere,	result	of	the	difference	in	concentrations	and	resistance	between	them.	In	the	dry	deposition	of	
particles	the	scheme	used	depend	of	the	given	use	to	the	land	over	is	made	the	analysis.	This	scheme	confer	
flexibility	and	dynamism	in	the	aerosol	size,	although	due	to	simplicity	is	taken	two	sizes	of	reference	0.7	and	
8.0	μm.	

The	 operator	 of	 wet	 deposition	 is	 modeled	 through	 the	 belowcloud	 scavenging	 process.	 The	 belowcloud	
scavenging	process	uses	a	sweep	coefficient	Λ	[s-1]	that	describes	the	mass	transfer	speed	of	a	pollutant	from	
the	 air	 to	 the	 raindrops.	 The	 value	 of	 the	 sweep	 coefficient	 depends	 of	 the	 considered	 component.	
Nevertheless,	in	general	the	decrease	in	concentration	C	[μg	/	m3]	is	calculated	as:	 	 	 	

𝜕𝐶
𝜕𝑡

= −𝛬𝐶	

The	contribution	to	the	flow	of	wet	deposition	∆D	[µg/m2]	is	described	by:	

(2)	

(3)	

(4)	
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∆𝐷 = 𝐶! 1 − 𝑒!!" ∆𝑧	

where	C0	is	the	initial	concentration	and	∆𝑧	[m]	is	the	height	of	a	cell	in	the	resolution	grid.	

The	 LOTOS-EUROS	model	 is	 considered	 on	 a	 large	 scale	 due	 to	 the	 solution	 of	 (1)	 is	 executed	 for	 different	
components	and	in	each	point	belonging	to	a	grid	on	the	region	of	analysis.	Because	of	this	process	the	vector	
of	states	has	large	size	(in	the	order	of	thousand).	

	

2.3.	DATA	ASSIMILATION	

Data	Assimilation	is	a	mathematical	process	that	provides	integration	between	measured	values	(observations)	
and	a	dynamical	 transport	model,	 to	 improve	the	operation	of	 the	model.	The	output	value	provided	by	 the	
model	 has	 a	 smaller	 error	 than	 the	 output	 value	 provided	 by	 the	 model	 without	 observations.	 Data	
Assimilation	 has	 two	 key	 objectives,	 to	 improve	 the	 operation	 in	 predictions	 of	 model	 states	 and	 estimate	
unknown	parameters	of	the	model	(Berardi,	Andrisani,	Lopez,	&	Vurro,	2016).	The	Data	Assimilation	has	been	
proven	in	different	science	fields	as	oceanography,	climatology,	air	quality	models	and	atmospheric	chemistry		
(van	 Loon	 et	 al.,	 2000).	 With	 the	 Data	 Assimilation	 are	 filled	 voids	 of	 time	 and	 space	 where	 it	 have	 not	
observations,	alike,	there	is	added	a	value	to	the	model,	restricting	it	with	the	observations,	and	in	the	same	
way	 is	possible	 to	make	a	consistent	simulation	and	 lead	 the	surface	area	or	 study	 region.	Data	Assimilation	
allows	 integrate	 models	 and	 observations	 with	 different	 scales	 of	 size	 and	 temporal	 sampling	 (Lahoz	 &	
Schneider,	2014).	

When	 two	 sources	 of	 information	 are	 combined,	 Data	 Assimilation	 assumes	 that	 both	 the	 model	 and	 the	
measurements	 are	 subject	 to	 errors.	 These	 errors	 are	 impossible	 to	 know	 with	 accuracy	 and	 need	 to	 be	
specified	in	statistical	and	probabilistic	terms.	Data	assimilation	is	not	only	looking	to	reduce	the	model	error	in	
points	or	time	with	observations,	its	mission	is	to	digest	the	observation	based	on	the	laws	given	by	the	model	
and	to	determine	the	dynamic	evolution	of	the	model	state	that	represent	better	the	measurements	(Bocquet	
et	al.,	2015;	van	Loon	et	al.,	2000).	

According	to	the	implemented	method	in	Data	Assimilation,	exist	two	main	categories:	filtering	methods	and	
Variational	methods	 (Lahoz	&	Schneider,	2014;	 Lu,	 Lin,	Heemink,	Fu,	&	Segers,	2016).	The	 filtering	methods,	
also	called	the	Kalman	Filter,	are	a	type	of	sequential	method	that	looks	for	improvements	in	the	prediction	of	
the	 model	 reducing	 the	 covariance	 between	 observations	 and	 model	 outputs.	 For	 this	 methods	 are	 used	
variations	of	Kalman	Filter	that	make	it	more	efficient	in	large	scale	problems	(Berardi	et	al.,	2016;	Sebacher,	
Hanea,	&	Heemink,	2013).	On	other	hand,	Variational	methods	looks	for	the	optimal	states	set	that	minimize	
cost	functions	between	observations	made	and	model	outputs	(Altaf,	El	Gharamti,	Heemink,	&	Hoteit,	2013;	Lu	
et	al.,	2016).	

2.3.1.	VARIATIONAL	METHODS	
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(5)	

(6)	

One	 of	 the	 most	 widely	 used	 variational	 methods	 in	 Data	 Assimilation	 is	 the	 method	 4D-Var,	 as	 its	 name	
implies,	the	method	4D-Var	is	a	variational	method	in	four	dimensions.	It	is	an	extension	of	the	method	3D-Var	
generalized	with	the	incorporation	of	time	as	a	fourth	variable.	The	method	4D-Var	looks	for	initial	conditions	
of	 the	 model	 states	 which	 can	 provide	 a	 better	 fit	 with	 respect	 to	 observations	 within	 the	 interval	 of	
assimilation	(Altaf	et	al.,	2013;	Lu	et	al.,	2016).	Figure	1	shows	an	illustrative	explanation	of	the	method.		

	

Figure1.	Variational	Method	4D-Var	(Lahoz	&	Schneider,	2014).	

The	method	4D-Var	look	for	minimize	the	cost	function	that	relates	the	difference	among	the	current	state,	the	
previous	 states	 and	 the	 prediction	 of	 the	model	 from	 observations	 in	 interval	 of	 assimilation.	 Consider	 the	
discrete	model	of	a	nonlinear	dynamical	system	given	by	(5)	and	(6)	(Lu	et	al.,	2016):	

                                                                    𝑋 𝑡!!! = 𝑀! 𝑋 𝑡! ,𝑈 𝑡! 	

       𝑌 𝑡! = 𝐻 𝑋 𝑡! + 𝜂 𝑡! 	

where,	𝑋 𝑡! 	is	a	vector	of	states	in	the	time	i,  𝑈 𝑡! are	inputs	of	the	system,	𝑀! 	is	a	nonlinear	operator	which	
propagates	the	states, 𝑌 𝑡! 	are	model	observations,	𝐻	is	a	nonlinear	operator	which	maps	the	state	space	on	
observation	space	and	𝜂 𝑡! 	is	the	Gaussian	white	noise	with	cero	average	and	standard	deviation	given	by	the	
matrix	𝑅!.	

The	method	4D-Var	minimizes	the	functional	cost	(7)	using	the	initial	state	value	as	decision	variable	(Altaf	et	
al.,	2013).	

𝐽 𝑋! =
1
2
𝑋! − 𝑋!

!𝐵!!! 𝑋! − 𝑋! +
1
2

𝑌 𝑡! − 𝐻 𝑋 𝑡!
!
𝑅!!!

!

!!!

𝑌 𝑡! − 𝐻 𝑋 𝑡! 	 (7)	
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where	𝑋!	is	the	a	priori	state	to𝑋!,	assuming	a	correlation	with	covariance	matrix	𝐵!and	N	 is	the	assimilation	
window	size.	

2.3.2.	ENSEMBLE	KALMAN	FILTERING	

The	Ensemble	Kalman	Filter	(EnKF)	has	been	developed	by(Evensen,	1994).	It	has	been	implemented	in	many	
studies	because	of	its	simple	formulation	and	its	easy	implementation,	because	is	not	necessary	derivation	and	
integrations	 backward	 on	 time(Roop,	 Vyatkin,	&	 Salcic,	 2007).	 The	 EnKF	was	 designed	 to	 resolve	 two	major	
problems	related	to	the	use	of	the	Extended	Kalman	Filter	(EKF)	with	nonlinear	dynamics	in	large	state	spaces.	
The	mainly	problems	are	that	EKF	uses	a	closure	scheme	when	third-	and	higher-order	moments	 in	the	error	
covariance	equations	are	discarded,	and	the	other	problem	is	the	huge	computer	requirements.	The	EnKF	is	a	
sequential	filter	method,	it	means	that	the	model	is	integrated	forward	on	time,	and	when	a	measurement	is	
available,	is	used	to	reinitialize	the	model	before	the	integration	(Evensen,	2003).	To	understand	the	EnKF	first,	
is	showed	the	normal	Kalman	Filter.	Consider	the	linear	state-space	system	showed	in	(8).		
	

𝒙! = 𝑴!𝒙!!! + 𝒘! , 𝒘!~𝑁! 0,𝑸!  
𝒚! = 𝑯!𝒙! + 𝒗! ,               𝒗!~𝑁!! 0,𝑹! 	

	
where	𝒙! 	is	 the	 state	 vector,	𝒚! 	observed	 data	 vector,	𝑴!,𝑸! 	are	 the	 transition	 matrix	 and	 model	 error	
covariance	and	𝑯!,𝑹!are	 the	observation	matrix	 and	observation	error	 covariance	 respectively.	 The	 filtering	
problem	 involves	 estimation	 of	 the	 state	𝒙!	conditional	 on𝒚!.	 Consider	 the	 filtering	 distribution	𝑝(𝒙!|𝒚!)	is	
Gaussian,	the	moments	are	obtained	by	the	Kalman	filter.	Assume	that	the	filtering	distribution	at	time	𝑡 − 1	is:	
	

𝒙!!!|𝒚!!! ~ 𝑁!(𝜇!!!! ,𝑷!!!! )	
	
The	first	step	of	the	Kalman	Filter	methods	is	the	forecast	step,	in	this	step,	the	filter	calculates	the	moments	of	
the	distribution	at	time	t	with	the	data	at	time	𝑡 − 1.	
	

𝒙!|𝒚!!! ~ 𝑁!(𝜇!
! ,𝑷!

!)	
	
where:	
	

𝜇!
! = 𝑴!𝜇!!!! , 𝑷!

! = 𝑴!𝑷!!!! 𝑴!
! + 𝑸!	

	
The	next	step	called	update	or	analysis	step,	updates	the	state	at	time	𝑡,	with	the	data	in	time	𝑡,𝒚!.	
	

𝒙!
𝒚! |𝒚!!! ~ 𝑁

𝜇!
!

𝑯!𝜇!
!

𝑷!
!𝑷!

!𝑯!
!

𝑯!𝑷!
!𝑯!𝑷!

!𝑯!
! + 𝑹!

	

	
Using	the	properties	of	the	multivariate	normal	distribution,	it	follows	that		𝒙!|𝒚! ~ 𝑁!(𝜇!! ,𝑷!!),	where:	
	

(8)	

(9)	

(10)	

(11)	

(12)	

(13)	
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𝜇!! = 𝜇!!!
! +  𝑲! 𝒚! − 𝑯!𝜇!

! , 𝑷!! = (𝑰! − 𝑲!𝑯!
! )𝑷!

!	
	
The	matrix	𝑲!	is	the	Kalman	gain	matrix,	defined	as:	
	

𝑲! = 𝑷!
!𝑯!

! (𝑯!𝑷!
!𝑯!

! + 𝑹!)!!	
	
The	 EnKF	 is	 an	 approximate	 version	 of	 the	 Kalman	 filter,	 where	 the	 state	 distribution	 is	 represented	 by	 a	
sample	 from	 the	 distribution2(Barbu,	 Segers,	 Schaap,	 Heemink,	 &	 Builtjes,	 2009;	 Fu	 et	 al.,	 2016).	 For	 an	
ensemble	 of	 states	 from	𝑖 = 1…𝑁,	 the	 forescat	 step	 obtains	 a	 sample	 from	 the	 forescast	 distribution	 by	
applying	the	evolution	equation	to	each	posterior	ensemble	member	𝒙!!!

!(!)	at	time	𝑡 − 1:	
	

𝒙!
!(!) = 𝑴!𝒙!!!

!(!) + 𝒘!
(!), 𝒘!

(!)~𝑁 0,𝑸! 	
	
The	forecast	ensemble	𝒙!

!(!)	must	then	be	updated	based	o	the	new	data	𝒚!	.	This	are	do	stochastically	using	
the	perturbed	observations.	Given	the	forecasts𝒙!

!(!),	we	sample	forecast	observations	as:	
 

𝒚!
!(!) = 𝑯!𝒙!

!(!) + 𝒗!
(!), 𝒗!

(!)~𝑁 0,𝑹! 	
	
According	with	(16),	the	update	for	the	ensemble	𝒙!

!(!),	is	given	by:	
	

𝒙!
!(!) = 𝒙!

!(!) + 𝑲! 𝒚!!𝒚!
! ~𝑁 𝜇!! ,𝑷!! 	

	
where:	
																																																				𝜇!! = 𝐸(𝒙!

!(!))	
	
																																																			𝑷!! = 𝑷!

! − 𝑲!𝑯!𝑷!
!	

	
																																																			𝑲! = 𝑷!

!𝑯!
! (𝑯!𝑷!

!𝑯!
! + 𝑹!)!!	

	
																																																		𝑷! = !

!!!
(𝒙!

! ! − 𝒙!
!)(𝒙!

! ! − 𝒙!
!)!!

!!! 	
	

	

3.	RESEARCH	QUESTION	

The	air	 quality	 control	 problem	can	be	 represented	as	 a	Model	 Predictive	Control	 (MPC)	problem.	 The	MPC	
uses	 a	 model	 of	 the	 process	 to	 be	 controlled	 to	 predict	 the	 best	 control	 action	 and	 take	 de	 best	 possible	
decision(Bai,	Xiao,	Yang,	&	Zhang,	2009;	Qin	&	Badgwell,	2000).For	this	type	of	controller	is	very	important	the	

(14)	

(15)	

(16)	

(17)	

(18)	

(19)	

(20)	

(21)	
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accuracy	of	the	model,	 if	 the	model	does	not	represent	the	process	correctly,	 the	controller	will	generate	an	
incorrect	control	action	on	the	process(Oldewurtel	et	al.,	2010).	The	typical	block	diagram	for	a	MPC	is	showed	
in	Figure	2.	

	

Figure	2.	MPC	block	diagram	(Shi,	Kelkar,	&	Soloway,	2005)	

Extrapolating	 the	 concept	 of	 MPC	 to	 the	 problem	 of	 the	 air	 quality	 in	 the	 Aburrá	 Valley,	 is	 presented	 the	
diagram	block	showed	in	the	Figure	3.	

	

	

Figure	3.	MPC	block	diagram	for	the	problem	of	air	quality	in	the	Aburrá	Valley.	
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For	 the	 control	 problem	 of	 air	 quality,	 in	 this	 case,	 for	 the	 Aburrá	 Valley,	 the	 entities	 in	 charge	 of	 taking	
corrective	environmental	actions	(SIATA,	Área	Metropolitana	del	Valle	de	Aburrá	and	the	municipalities)	play	
the	 role	of	 the	 controller.	 These	entities	would	use	 the	 LOTOS-EUROS	 forecast	 to	make	 the	optimum	action	
over	 the	 transportation	and	 the	 industry.	This	 control	architecture	 looks	 for	 reduce	 the	differences	between	
the	measurements	of	air	quality	(outputs)	and	the	local	air	quality	index	(Set	Point),	keeping	low	the	pollutants	
levels	and	acting	before	that	represent	a	public	health	problem..	

Due	to	the	current	maximum	resolution	possible	in	the	model	LOTOS-EUROS	(9	km	x	7	km)	there	would	not	be	
a	correct	representation	of	the	Aburrá	Valley	atmosphere,	or	at	 least,	not	enough	to	execute	analysis	able	to	
understand	the	local	behavior.	Another	influential	factor	is	the	geography	that	can	produce	error	in	the	vertical	
layers	development	of	model.	In	other	way,	observation	of	concentrations	of	any	component	in	an	air	column	
from	satellite	data	and	the	assimilation	 is	complex,	 for	this	 in	(Lu	et	al.,	2016)	has	proposed	a	method	called	
Trajectory-Based	4D-Var	used	in	cases	which	the	number	of	parameters	is	reduced	(lesser	than	100	parameters	
to	be	assimilated).		

The	Aburrá	Valley	has	SIATA	system	(due	to	its	acronym	in	Spanish:	Sistema	de	AlertaTemprana	de	Medellín	y	
el	Valle	de	Aburrá),	which	has	deployed	sensors	network	in	the	metropolitan	area	of	Aburrá	Valley,	these	are	
able	to	measure	different	air	pollutants.	With	the	previous	outlook	the	following	research	question	has	been	
proposed:		

Is	 it	 possible	 obtain	 a	 complete	 dynamic	 representation	 of	 the	 atmosphere	 in	 Aburrá	 Valley,	 using	 LOTOS-
EUROS	model,	a	Data	Assimilation	technique	and	data	provided	by	satellite	and	the	SIATA	system?		

	

OBJECTIVES		

The	main	objective	of	this	proposal	is:	to	assimilate	the	Lotos-Euros	in	the	Aburrá	Valley	with	data	measured	on	
surface	that	allows	a	complete	representation	of	the	pollutants	in	the	low	atmosphere.		Specific	objectives	are:	

• To	determine	the	viability	of	the	Lotos-Euros	model	in	the	Tropical	Andes	region.	
	

• To	reduce	the	resolution	of	the	Lotos-Euros	model	to	a	size	that	allows	to	represent	the	dynamics	and	
behavior	of	the	pollutants	in	the	Aburrá	Valley.	
	

• To	analyze	 the	different	methods	of	Data	Assimilation,	 from	 its	 structure	and	operation	 in	 air	quality	
models	under	the	orographic	conditions	of	the	Aburrá	Valley.	
	

• To	compare	the	performance	of	different	methods	of	Data	Assimilation	 for	 the	Lotos-Euros	model	on	
the	Aburrá	Valley.	
	



	

	

TECHNICAL	REPORT	RT-03	

	

	

PublicDocument	 Page15	de	18	 MAUI-Data Assimilation On Air Quality Models -RT-03	

	

• To	 contribute	 to	 the	 field	 of	 data	 assimilation	 through	 the	 development	 of	 new	 schemes	 from	 the	
solution	of	the	particular	problem	related	to	air	quality	in	the	Aburrá	Valley.	
	

• To	 increase	 the	 possibility	 of	 forecasting	 of	 the	 Air	Quality	 in	 Aburrá	 Valley	 using	 Lotos-Euros	Model	
through	 Data	 Assimilation	 taking	 into	 account	 the	 need	 for	 more	 accurated	 data	 provided	 by	
governmental	agencies	such	as	SIATA	and	ÁreaMetropolitana.	

	

EXPECTED	RESULTS	

• Formation	as	PhD	in	Mathematical	Engineering.	
• At	least	one	scientific	papers.	
• Four	(4)	Reports	Working	papers.	
• An	Aburrá	Valley	Model	for	Air	Quality	completely	assimilated.	
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